What is ADF?

Please note: The FAQ pages at the HPCVL website are continuously being revised. Some pages might pertain to an older configuration of the system. Please let us know if you encounter problems or inaccuracies, and we will correct the entries.

ADF stands for "Amsterdam Density Functional" and denotes a package of programs that uses Density Functional Theory (DFT) for electronic and molecular structure calculations. The package is geared towards Chemists and Physicists with an interest in the structure of molecules and solids.

The ADF package consists of two main components:

  • ADF for molecular calculations
  • BAND for calculations on solids

Unlike most other molecular/solid/electronic structure codes, ADF employs "Slater-type" basis sets, ie, functions that have an exponential behavior, which are more suitable for the description of chemical systems than the more commonly employed "Gaussian type" ones. The downside of this are computational difficulties that may be circumvented by numerical integration. Since DFT depends largely on numerical integration anyhow, the "Slater approach" is particularly well-suited for DFT code.

ADF is arguably the best DFT code available at this time for transition metal compounds and solids.

ADF handles geometry optimizations, transition states, reaction paths, and infrared frequencies. It allows the calculation of a variety of properties, ranging from UV spectra (requiring the treatment of excited states) to NMR chemical shifts and spin-spin couplings (where the use of Slater-type bases is of great use). The BAND code can be used for calculations on polymers, surfaces and bulk solids.